
Learning Probabilistic Relational Models

Nir Friedman
�

Hebrew University

nir@cs.huji.ac.il

Lise Getoor
�

Stanford University

getoor@cs.stanford.edu

Daphne Koller
�

Stanford University

koller@cs.stanford.edu

Avi Pfeffer
�

Stanford University

avi@cs.stanford.edu

Abstract

A large portion of real-world data is stored in com-
mercial relational database systems. In contrast,
most statistical learning methods work only with
“flat” data representations. Thus, to apply these
methods, we are forced to convert our data into
a flat form, thereby losing much of the relational
structure present in our database. This paper builds
on the recent work on probabilistic relational mod-
els (PRMs), and describes how to learn them from
databases. PRMs allow the properties of an object
to depend probabilistically both on other proper-
ties of that object and on properties of related ob-
jects. Although PRMs are significantly more ex-
pressive than standard models, such as Bayesian
networks, we show how to extend well-known sta-
tistical methods for learning Bayesian networks to
learn these models. We describe both parameter
estimation and structure learning — the automatic
induction of the dependency structure in a model.
Moreover, we show how the learning procedure can
exploit standard database retrieval techniques for
efficient learning from large datasets. We present
experimental results on both real and synthetic re-
lational databases.

1 Introduction
Relational models are the most common representation of
structured data. Enterprise business information, marketing
and sales data, medical records, and scientific datasets are all
stored in relational databases. Indeed, relational databases are
a multi-billion dollar industry. Recently, there has been grow-
ing interest in making more sophisticated use of these huge
amounts of data, in particular mining these databases for cer-
tain patterns and regularities. By explicitly modeling these
regularities, we can gain a deeper understanding of our do-
main and may discover useful relationships. We can also use
our model to “fill in” unknown but important information. For

�
The Institute of Computer Science, Hebrew University,

Jerusalem 91904, ISRAEL�
Computer Science Department, Stanford University, Gates

Building 1A, Stanford CA 94305-9010

example, we may be interested in predicting whether a person
is a potential money-launderer based on their bank deposits,
international travel, business connections and arrest records
of known associates [Jensen, 1997]. In another case, we may
be interested in classifying web pages as belonging to a stu-
dent, a faculty member, a project, etc., using attributes of the
web page and of related pages [Craven et al., 1998].

Unfortunately, few inductive learning algorithms are capa-
ble of handling data in its relational form. Most are restricted
to dealing with a flat set of instances, each with its own sepa-
rate attributes. To use these methods, one typically “flattens”
the relational data, removing its richer structure. This pro-
cess, however, loses information which might be crucial in
understanding the data. Consider, for example, the problem
of predicting the value of an attribute of a certain entity, e.g.,
whether a person is a money-launderer. This attribute will
be correlated with other attributes of this entity, as well as
with attributes of related entities, e.g., of financial transac-
tions conducted by this person, of other people involved in
these transactions, of other transactions conducted by these
people, etc. In order to “flatten” this problem, we would need
to decide in advance on a fixed set of attributes that the learn-
ing algorithm can use in this task. Thus, we want a learning
algorithm that can deal with multiple entities and their prop-
erties, and can reach conclusions about an entity’s character-
istics based on the properties of the entities to which it is re-
lated. Until now, inductive logic programming (ILP) [Lavrac̆
and Dz̆eroski, 1994] has been the primary learning frame-
work with this capability. ILP algorithms learn logical Horn
rules for determining when some first-order predicate holds.
While ILP is an excellent solution in many settings, it may be
inappropriate in others. The main limitation is the determin-
istic nature of the rules discovered. In many domains, such
as the examples above, we encounter interesting correlations
that are far from being deterministic.

Our goal in this paper is to learn more refined probabilis-
tic models, that represent statistical correlations both between
the properties of an entity and between the properties of re-
lated entities. Such a model can then be used for reasoning
about an entity using the entire rich structure of knowledge
encoded by the relational representation.

The starting point for our work is the structured representa-
tion of probabilistic models, as exemplified in Bayesian net-
works (BNs). A BN allows us to provide a compact rep-

resentation of a complex probability distribution over some
fixed set of attributes or random variables. The representa-
tion exploits the locality of influence that is present in many
domains. We build on two recent developments in the field
of Bayesian networks. The first is the deep understanding
of the statistical learning problem in such models [Hecker-
man, 1998; Heckerman et al., 1995] and the role of struc-
ture in providing an appropriate bias for the learning task.
The second is the recent development of representations that
extend the attribute-based BN representation to incorporate
a much richer relational structure [Koller and Pfeffer, 1998;
Ngo and Haddawy, 1996; Poole, 1993].

In this paper, we combine these two advances. Indeed, one
of our key contributions is to show that many of the tech-
niques of Bayesian network learning can be extended to the
task of learning these more complex models. This contribu-
tion generalizes [Koller and Pfeffer, 1997]’s preliminary work
on this topic. We start by describing the semantics of proba-
bilistic relational models. We then examine the problems of
parameter estimation and structure selection for this class of
models. We deal with some crucial technical issues that dis-
tinguish the problem of learning relational probabilistic mod-
els from that of learning Bayesian networks. We provide a
formulation of the likelihood function appropriate to this set-
ting, and show how it interacts with the standard assumptions
of BN learning. The search over coherent dependency struc-
tures is significantly more complex than in the case of learn-
ing BN structure and we introduce the necessary tools and
concepts to do this effectively. We then describe experimen-
tal results on synthetic and real-world datasets, and finally
discuss possible extensions and applications.

2 Underlying framework

2.1 Relational model

We describe our relational model in generic terms, closely re-
lated to the language of entity-relationship models. This gen-
erality allows our framework to be mapped into a variety of
specific relational systems, including the probabilistic logic
programs of [Ngo and Haddawy, 1996; Poole, 1993], and the
probabilistic frame systems of [Koller and Pfeffer, 1998]. Our
learning results apply to all of these frameworks.

The vocabulary of a relational model consists of a set of
classes

�������������	��

and a set of relations � ���������� ��� . Each

entity type is associated with a set of attributes ��� ����� . Each
attribute ��������� ����� takes on values in some fixed domain
of values ����� � � . Each relation � is typed. This vocabulary
defines a schema for our relational model.

Consider a simple genetic model of the inheritance of a
single gene that determines a person’s blood type. Each per-
son has two copies of the chromosome containing this gene,
one inherited from her mother, and one inherited from her fa-
ther. There is also a possibly contaminated test that attempts
to recognize the person’s blood type. Our schema contains
two classes Person and Blood-Test, and three relations Father,
Mother, and Test-of . Attributes of Person are Name, Gender,
P-Chromosome (the chromosome inherited from the father),
M-Chromosome (inherited from the mother). The attributes

of Blood-Test are Serial-Number, Date, Contaminated, and
Result.

An instance � of a schema defines a set of entities �! "� � � �
for each entity type

� �
. For each entity #$�%�& '� � � � , and

each attribute ���&�(��� ����� , the instance has an associated at-
tribute # �) � ; its value in � is denoted �+*-, .0/ . For each relation
�1� ������������	��2�� and each 34# �-��������� # 2-5 �6� � �����87:9�9�9;7�& "� � 2 � , � specifies whether �<�=# � ��������� # 2 � holds.

We are interested in describing a probability model over
instances of a relational schema. However, some attributes,
such as a name or social security number, are fully deter-
mined. We label such attributes as fixed. We assume that
they are known in any instantiation of the schema. The other
attributes are called probabilistic. A skeleton structure > of
a relational schema is a partial specification of an instance of
the schema. It specifies the set of objects �@?A� ����� for each
class, the values of the fixed attributes of these objects, and
the relations that hold between the objects. However, it leaves
the values of probabilistic attributes unspecified. A comple-
tion � of the skeleton structure > extends the skeleton by also
specifying the values of the probabilistic attributes.

One final definition which will turn out to be useful is the
notion of a slot chain. If �<� � � ���������	� 2 � is any relation, we
can project � onto its B -th and C -th arguments to obtain a
binary relation DE� ���F�G� � � , which we can then view as a slot
of
� �

. For any # in
� �

, we let # � D denote all the elements H
in
� � such that DE�4# � H � holds. (In relational algebra notation# � D<IKJML"/�>NL"O�P+*Q� .) Objects in this set are called D -relatives

of # . We can concatenate slots to form longer slot chainsR ISD ����9�9�9�� DT� , defined by composition of binary relations.
(Each of the D � ’s in the chain must be appropriately typed.)

2.2 Probabilistic Relational Models
We now proceed to the definition of probabilistic relational
models (PRMs). The basic goal here is to model our uncer-
tainty about the values of the non-fixed, or probabilistic, at-
tributes of the objects in our domain of discourse. In other
words, given a skeleton structure, we want to define a proba-
bility distribution over all completions of the skeleton.

Our probabilistic model consists of two components: the
qualitative dependency structure, U , and the parameters as-
sociated with it, V�W . The dependency structure is defined by
associating with each attribute

�X� � a set of parents Pa � �Y� � � .
These correspond to formal parents; they will be instantiated
in different ways for different objects in

�
. Intuitively, the

parents are attributes that are “direct influences” on
�Y� � .

We distinguish between two types of formal parents. The
attribute

�X� � can depend on another probabilistic attribute Z
of
�

. This formal dependence induces a corresponding de-
pendency for individual objects: for any object # in � ? � �[� ,# �) will depend probabilistically on # �]\ . The attribute

�Y� �
can also depend on attributes of related objects

�Y� R � Z , whereR is a slot chain. To understand the semantics of this formal
dependence for an individual object # , recall that # � R repre-
sents the set of objects that are R -relatives of # . Except in
cases where the slot chain is guaranteed to be single-valued,
we must specify the probabilistic dependence of # �) on the
multiset ^_H �]\a` Hb�c# � REd . The notion of aggregation from
database theory gives us precisely the right tool to address

name

mother

P-chromosome
M-chromosome

father

blood type

Person

name

mother

P-chromosome
M-chromosome

father

blood type

Person

name

mother

P-chromosome
M-chromosome

father

blood type

Person

Blood Test
test-id
name

contaminated
result

Figure 1: The PRM structure for a simple genetics domain.
Fixed attributes are shown in regular font and probabilistic
attributes are shown in italic. Dotted lines indicate relations
between entities and solid arrows indicate probabilistic de-
pendencies.

this issue; i.e., # �) will depend probabilistically on some ag-
gregate property of this multiset. There are many natural and
useful notions of aggregation: the mode of the set (most fre-
quently occurring value); mean value of the set (if values are
numerical); median, maximum, or minimum (if values are
ordered); cardinality of the set; etc.

More formally, our language allows a notion of an aggre-
gate � ; � takes a multiset of values of some ground type, and
returns a summary of it. The type of the aggregate can be the
same as that of its arguments. However, we allow other types
as well, e.g., an aggregate that reports the size of the multiset.
We allow

�Y� � to have as a parent � � �Y� R � Z � ; the semantics is
that for any #(� � , # �) will depend on the value of � �4# � R � \�� .
We define ��� � � �Y� R �]\��	� in the obvious way.

Returning to our genetics example, consider the attribute
Blood-Test

�
Result. Since the result of a blood test depends on

whether it was contaminated, it has Blood-Test
�
Contaminated

as a parent. The result also depends on the ge-
netic material of the person tested. Since Test-of is
single-valued, we add Blood-Test

�
Test-of

�
M-Chromosome

and Blood-Test
�
Test-of

�
P-Chromosome as parents. Figure 1

shows the structure of a simple PRM for this domain.
Given a set of parents Pa � �Y� � � for

�Y� � , we can define
a local probability model for

�Y� � . We associate
�Y� � with

a conditional probability distribution (CPD) that specifies� � �X� ��� Pa � �Y� � �	� . More precisely, let � be the set of par-
ents of

�Y� � . Recall that each of these parents � � — whether
a simple attribute in the same relation or an aggregate of a set
of R relatives — has a set of values ����� ��� in some ground
type. For each tuple of values �:� ����� � , the CPD specifies
a distribution

� � �Y� �	�
� � over ��� �X� � � . The parameters in
all of these CPDs comprise V W .

Given a skeleton structure for our schema, we want to use
these local probability models to define a probability distri-
bution over completions of the skeleton. First, note that the
skeleton determines the set of objects in our model. We asso-
ciate a random variable # �) with each probabilistic attribute� of each object # . The skeleton also determines the relations

between objects, and thereby the set of R -relatives associated
with every object for each relationship chain R . Also note
that by assuming that the relations between objects are al-
ways specified by > , we are disallowing uncertainty over the
relational structure of the model.

To define a coherent probabilistic model over this skele-
ton, we must ensure that our probabilistic dependencies are
acyclic, so that a random variable does not depend, directly
or indirectly, on its own value. Consider the parents of an
attribute

�Y� � . When
�Y� Z is a parent of

�X� � , we define an
edge # �]\�� ? #

�)
; when � � �Y� R � Z � is a parent of

�X� � andH � # � R , we define an edge H �]\� ? # �) . We say that a
dependency structure U is acyclic relative to a skeleton > if
the directed graph defined by

�
? over the variables # �) is

acyclic. In this case, we can define a coherent probabilistic
model over complete instantiations � consistent with > :

� � ����> � U � V W � I�
L O

�
������� L O��

�
* ������� L O��

� � �A*Q, .���� Pa
� *Q, . � � (1)

Proposition 2.1: If U is acyclic relative to > , then (1) defines
a distribution over completions � of > .

We briefly sketch a proof of this proposition, by showing
how to construct a BN over the probabilistic attributes of a
skeleton using �4U � V W � . This construction is reminiscent of
the knowledge-based model construction approach [Wellman
et al., 1992]. Here, however, the construction is merely a
thought-experiment; our learning algorithm never constructs
this network. In this network there is a node for each vari-
able # �) and for aggregate quantities required by parents. The
parents of these aggregate random variables are all of the at-
tributes that participate in the aggregation, according to the
relations specified by > . The CPDs of random variables that
correspond to probabilistic attributes are simply the CPDs de-
scribed by V�W , and the CPDs of random variables that corre-
spond to aggregate nodes capture the deterministic function
of the particular aggregate operator. It is easy to verify that
if the probabilistic dependencies are acyclic, then so is the
induced Bayesian network. This construction also suggests
one way of answering queries about a relational model. We
can “compile” the corresponding Bayesian network and use
standard tools for answering queries about it.

Although for each skeleton, we can compile a PRM into a
Bayesian network, a PRM expresses much more information
than the resulting BN. A BN defines a probability distribution
over a fixed set of attributes. A PRM specifies a distribution
over any skeleton; in different skeletons, the set (and num-
ber) of entities in the domain will vary, as will the relations
between the entities. In a way, PRMs are to BNs as a set of
rules in first-order logic is to a set of rules in propositional
logic: A rule such as � # � H �! N� Parent �4# � H ��" Parent �4H �! T�$#
Grandparent �=# �% � induces a potentially infinite set of ground
(propositional) instantiations.

3 Parameter Estimation
We now move to the task of learning PRMs. We begin with
learning the parameters for a PRM where the dependency

structure is known. In other words, we are given the structureU that determines the set of parents for each attribute, and our
task is to learn the parameters V�W that define the CPDs for
this structure. Our learning is based on a particular training
set, which we will take to be a complete instance � . While
this task is relatively straightforward, it is of interest in and
of itself. In addition, it is a crucial component in the structure
learning algorithm described in the next section.

The key ingredient in parameter estimation is the likelihood
function, the probability of the data given the model. This
function captures the response of the probability distribution
to changes in the parameters. As usual, the likelihood of a
parameter set is defined to be the probability of the data given
the model:

� �4V W ��� � > � U � I � � � � > � U � V W �0� As usual, we
typically work with the log of this function:� �4V W �0� � > � U � I������ � � ����> � U � V W �

I �
L O

�
������� L'O �

	
 �
* ��� � � L'O � ����� � � �A*Q, . ��� Pa

� *Q, . � ���Y� (2)

The key insight is that this equation is very similar to
the log-likelihood of data given a Bayesian network [Heck-
erman, 1998]. In fact, it is the likelihood function of the
Bayesian network induced by the structure given the skele-
ton. The main difference from standard Bayesian network
parameter learning is that parameters for different nodes in
the network are forced to be identical. Thus, we can use the
well-understood theory of learning from Bayesian networks.
Consider the task of performing maximum likelihood param-
eter estimation. Here, our goal is to find the parameter set-
ting V W that maximizes the likelihood

� �4V W � � � > � U � for a
given � , > and U . This estimation is simplified by the de-
composition of log-likelihood function into a summation of
terms corresponding to the various attributes of the different
classes. Each of the terms in the square brackets in (2) can be
maximized independently of the rest. Hence, maximal likeli-
hood estimation reduces to independent maximization prob-
lems, one for each CPD.

For multinomial CPDs, maximum likelihood estimation
can be done via sufficient statistics which in this case are just
the counts C L , ��� � � ��� of the different values � � � that the at-
tribute

�Y� � and its parents can jointly take.

Proposition 3.1: Assuming multinomial CPDs, the maximum
likelihood parameter setting �V W is

� � �Y� �KI � � Pa � �Y� � � I � � I C L , � � � � ��������
C L , ��� ��� � ���

As a consequence of this proposition, parameter learning
in PRMs is reduced to counting sufficient statistics. We need
to count one vector of sufficient statistics for each CPD. Such
counting can be done in a straightforward manner using stan-
dard databases queries.

Note that this proposition shows that learning parameters in
PRMs is very similar to learning parameters in Bayesian net-
works. In fact, we might view this as learning parameters for
the BN that the PRM induces given the skeleton. However, as

discussed above, the learned parameters can then be used for
reasoning about other skeletons, which induce a completely
different BN.

In many cases, maximum likelihood parameter estimation
is not robust, as it overfits the training data. The Bayesian ap-
proach uses a prior distribution over the parameters to smooth
the irregularities in the training data, and is therefore sig-
nificantly more robust. As we will see in Section 4.2, the
Bayesian framework also gives us a good metric for evaluat-
ing the quality of different candidate structures. Due to space
limitations, we only briefly describe this alternative approach.

Roughly speaking, the Bayesian approach introduces a
prior over the unknown parameters, and performs Bayesian
conditioning, using the data as evidence, to compute a poste-
rior distribution over these parameters. To apply this idea in
our setting, recall that the PRM parameters V W are composed
of a set of individual probability distribution V L , ��� for each
conditional distribution of the form

� � �X� � � Pa � �Y� � � I
� � . Following the work on Bayesian approaches for learn-
ing Bayesian networks [Heckerman, 1998], we make two as-
sumptions. First, we assume parameter independence: the
priors over the parameters V L , ��� for the different

�Y� � and are independent. Second, we assume that the prior overV L , ��� is a Dirichlet distribution. Briefly, a Dirichlet prior for
a multinomial distribution of a variable ! is specified by a set
of hyperparameters ^#" � $ � ` $ � � ��! � d . A distribution on

the parameters of
� �%! �

is Dirichlet if &('_�4V�) �+*-,/. V�021 .43.
.

(For more details see [DeGroot, 1970].)
For a parameter prior satisfying these two assumptions, the

posterior also has this form. That is, it is a product of inde-
pendent Dirichlet distributions over the parameters V L , ��� ,
which can be computed easily.
Proposition 3.2: If � is a complete assignment, and the prior
satisfies parameter independence and Dirichlet with hyper-
parameters ""L , � � � � ��� , then the posterior

� �4V W � � � > � U �
is a product of Dirichlet distributions with hyperparameters" � L , � � � � ���AI�""L , � � � � ���65 C L , � � � � ��� .

Once we have updated the posterior, how do we evaluate
the probability of new data? In the case of BN learning, we
assume that instances are IID, which implies that they are in-
dependent given the value of the parameters. Thus, to evalu-
ate a new instance, we only need the posterior over the param-
eters. The probability of the new instance is then the proba-
bility given every possible parameter value, weighted by the
posterior probability over these values. In the case of BNs,
this term can be rewritten simply as the instance probabil-
ity according to the expected value of the parameters (i.e., the
mean of the posterior Dirichlet for each parameter). This sug-
gests that we might use the expected parameters for evaluat-
ing new data. Indeed, the formula for the expected parameters
is analogous to the one for BNs:
Proposition 3.3 : Assuming multinomial CPDs, prior in-
dependence, and Dirichlet priors, with hyperparameters" L , �7� � � ��� , we have that:8 � � � �Y� � I � � Pa � �Y� � � I � � �0�9�AI

C L , �:� � � ���65;" L , �7� � � ������ �
C L , � � � � � ���<5=""L , � � � � � ���

Unfortunately, the expected parameters are not the proper
Bayesian solution for computing probability of new data.
There are two possible complications.

The first problem is that, in our setting, the assumption of
IID data is often violated. Specifically, a new instance might
not be conditionally independent of old ones given the param-
eters. Consider the genetics domain, and assume that our new
data involves information about the mother # � of some per-
son # already in the database. In this case, the introduction
of the new object # � also changes our probability about the
attributes of # � . We therefore cannot simply use our old pos-
terior about the parameters to reason about the new instance.
This problem does not occur if the new data is not related to
the training data, that is, when the new data is essentially a
disjoint database with the same scheme. More interestingly,
the problem also disappears when attributes of new objects
are not parents of any attribute in the training set. In the ge-
netics example, this means that we can insert new people into
our database, as long as they are not ancestors of people al-
ready in the database.

The second problem involves the formal justification for
using expected parameters values. This argument depends on
the fact that the probability of a new instance is linear in the
value of each parameter. That is, each parameter is “used”
at most once. This assumption is violated when we consider
the probability of a complex database involving multiple in-
stances from the same class. In this case, our integral of the
probability of the new data given the parameters can no longer
be reduced to computing the probability relative to the ex-
pected parameter value. The correct expression is called the
marginal likelihood of the (new) data; we use it in Section 4.2
for scoring structures. For now, we note that if the posterior is
sharply peaked (i.e., we have seen many training instances),
we can approximate this term by using the expected parame-
ters of Proposition 3.3, as we could for a single instance. In
practice, we will often use these expected parameters as our
learned model.

4 Structure selection
We now move to the more challenging problem of learning a
dependency structure automatically, as opposed to having it
given by the user. There are three important issues that need
to be addressed. We must determine which dependency struc-
tures are legal; we need to evaluate the “goodness” of differ-
ent candidate structures; and we need to define an effective
search procedure that finds a good structure.

4.1 Legal structures
When we consider different dependency structures, it is im-
portant to be sure that the dependency structure U we choose
results in coherent probability models. To guarantee this
property, we see from Proposition 2.1 that the skeleton > must
be acyclic relative to U . Of course, we can easily verify for
a given candidate structure U that it is acyclic relative to the
skeleton > of our training database. However, we also want
to guarantee that it will be acyclic relative to other databases
that we may encounter in our domain. How do we guarantee
acyclicity for an arbitrary database? A simple approach is to

ensure that dependencies among attributes respect some order
(i.e., are stratified). More precisely, we say that

�Y� � directly
depends on

� � Z if either (a)
� I � and

�Y� Z is a parent of�Y� � , or (b) � � �Y� R � Z � is a parent of
�Y� � and the R -relatives

of
�

are of class
�

. We then require that
�Y� � directly de-

pends only on attributes that precede it in the order.
While this simple approach clearly ensures acyclicity,

it is too limited to cover many important cases. Con-
sider again our genetic model. Here, the genotype
of a person depends on the genotype of her parents;
thus, we have Person

�
P-Chromosome depending directly on

Person
�
P-Chromosome, which clearly violates the require-

ments of our simple approach. In this model, the appar-
ent cyclicity at the attribute level is resolved at the level of
individual objects, as a person cannot be his/her own an-
cestor. That is, the resolution of acyclicity relies on some
prior knowledge that we have about the domain. To allow
our learning algorithm to deal with dependency models such
as this we must allow the user to give our algorithm prior
knowledge. We allow the user to assert that certain slots��� .SI ^_D � ��������� D 2 d are guaranteed acyclic; i.e., we are
guaranteed that there is a partial ordering � � . such that ifH is a D -relative for some Db� � � . of # , then H�� � . # . We
say that R is guaranteed acyclic if each of its components D ’s
is guaranteed acyclic.

We use this prior knowledge determine the legality of cer-
tain dependency models. We start by building a graph that
describes the direct dependencies between the attributes. In
this graph, we have a yellow edge

�Y� Z � �Y� � if
�Y� Z is a

parent of
�Y� � . If � � �Y� R � Z � is a parent of

�Y� � , we have an
edge

� � Z � �Y� � which is green if R is guaranteed acyclic
and red otherwise. (Note that there might be several edges,
of different colors, between two attributes). The intuition is
that dependency along green edges relates objects that are or-
dered by an acyclic order. Thus these edges by themselves or
combined with intra-object dependencies (yellow edges) can-
not cause a cyclic dependency. We must take care with other
dependencies, for which we do not have prior knowledge, as
these might form a cycle. This intuition suggests the follow-
ing definition: A (colored) dependency graph is stratified if
every cycle in the graph contains at least one green edge and
no red edges.

Proposition 4.1: If the colored dependency graph of U and��� . is stratified, then for any skeleton > for which the slots
in
� � . are jointly acyclic, U defines a coherent probability

distribution over assignments to > .

This notion of stratification generalizes the two special
cases we considered above. When we do not have any guaran-
teed acyclic relations, all the edges in the dependency graph
are colored either yellow or red. Thus, the graph is strati-
fied if and only if it is acyclic. In the genetics example, all
the relations would be in

��� . . Thus, it suffices to check that
dependencies within objects (yellow edges) are acyclic.

Proposition 4.2: Stratification of a colored graph can be de-
termined in time linear in the number of edges in the graph.

We omit the details of the algorithm for lack of space, but it
relies on standard graph algorithms. Finally, we note that it

is easy to expand this definition of stratification for situations
where our prior knowledge involves several sets of guaran-
teed acyclic relations, each set with its own order (e.g., ob-
jects on a grid with a north-south ordering and an east-west
ordering). We simply color the graph with several colors, and
check that each cycle contains edges with exactly one color
other than yellow, except for red.

4.2 Evaluating different structures
Now that we know which structures are legal, we need to de-
cide how to evaluate different structures in order to pick one
that fits the data well. We adapt Bayesian model selection
methods to our framework. Formally, we want to compute
the posterior probability of a structure U given an instantia-
tion � . Using Bayes rule we have that

� � U ��� � > � * � � � �U � > � � � U �"> � . This score is composed of two main parts:
the prior probability of the structure, and the probability of
the data assuming that structure.

The first component is
� �4U � > � , which defines a prior

over structures. We assume that the choice of structure is in-
dependent of the skeleton, and thus

� �4U ��> � I � �4U � . In the
context of Bayesian networks, we often use a simple uniform
prior over possible dependency structures. Unfortunately, this
assumption does not work in our setting. The problem is that
there may be infinitely many possible structures. In our ge-
netics example, a person’s genotype can depend on the geno-
type of his parents, or of his grandparents, or of his great-
grandparents, etc. A simple and natural solution penalizes
long indirect slot chains, by having ����� � � U � proportional to
the sum of the lengths of the chains R appearing in U .

The second component is the marginal likelihood:

� � � �_U � > � I
� � � ���_U � V W � > � � �4V W �_U ��� V W

If we use a parameter independent Dirichlet prior (as above,
this integral decomposes into a product of integrals each of
which has a simple closed form solution. (This is a sim-
ple generalization of the ideas used in the Bayesian score for
Bayesian networks.)

Proposition 4.3: If � is a complete assignment, and
� �4V W �U � satisfies parameter independence and is Dirichlet with hy-

perparameters "'L , � � � � ��� , then,
� � � � U � > � , the marginal

likelihood of � given U , is equal to
�
�

�
������� L O��

�
� ��� � � � Pa

� L O , � � � DM �F^ C L O , �:� � � ��� d � ^#" L O , �:� � � ��� d �
where

DM � ^ C � � � d � ^ " � � � d � I � � ��� 0 1 � 3 �� � �	� � 021 � 3�
 C 1 � 3 � � , � � � 021
� 3�

C 1 � 3 �� � 0 1 � 3 � ,

and � �=# � I������ *�� ��� ��� � � is the Gamma function.

Hence, the marginal likelihood is a product of simple
terms, each of which corresponds to a distribution

� � �X� � �
� � where �b� ��� Pa � �Y� � �G� . Moreover, the term for

� � �Y� � �
� � depends only on the hyperparameters " L , �:� � � ��� and the
sufficient statistics C L , �:� � � ��� for � � ��� �Y� � � .

The marginal likelihood term is the dominant term in the
probability of a structure. It balances the complexity of the

structure with its fit to the data. This balance can be made
explicitly via the asymptotic relation of the marginal likeli-
hood to explicit penalization, such as the MDL score (see,
e.g., [Heckerman, 1998]).

Finally, we note that the Bayesian score requires that we
assign a prior over parameter values for each possible struc-
ture. Since there are many (perhaps infinitely many) alter-
native structures, this is a formidable task. In the case of
Bayesian networks, there is a class of priors that can be de-
scribed by a single network [Heckerman et al., 1995]. These
priors have the additional property of being structure equiva-
lent, that is, they guarantee that the marginal likelihood is the
same for structures that are, in some strong sense, equivalent.
These notions have not yet been defined for our richer struc-
tures, so we defer the issue to future work. Instead, we simply
assume that some simple Dirichlet prior (e.g., a uniform one)
has been defined for each attribute and parent set.

4.3 Structure search
Now that we have a test for determining whether a structure is
“legal”, and a scoring function that allows us to evaluate dif-
ferent structures, we need only provide a procedure for find-
ing legal high-scoring structures. For Bayesian networks, we
know that this task is NP-Hard [Chickering, 1996]. As PRM
learning is at least as hard as BN learning (a BN is simply a
PRM with one class and no relations), we cannot hope to find
an efficient procedure that always finds the highest scoring
structure. Thus, we must resort to heuristic search. The sim-
plest such algorithm is greedy hill-climbing search, using our
score as a metric. We maintain our current candidate structure
and iteratively improve it. At each iteration, we consider a set
of simple local transformations to that structure, score all of
them, and pick the one with highest score. We deal with local
maxima using random restarts.

As in Bayesian networks, the decomposability property
of the score has significant impact on the computational ef-
ficiency of the search algorithm. First, we decompose the
score into a sum of local scores corresponding to individual
attributes and their parents. Now, if our search algorithm con-
siders a modification to our current structure where the parent
set of a single attribute

�Y� � is different, only the component
of the score associated with

�Y� � will change. Thus, we need
only reevaluate this particular component, leaving the others
unchanged; this results in major computational savings.

There are two problems with this simple approach. First,
as discussed in the previous section, we have infinitely many
possible structures. Second, even the atomic steps of the
search are expensive; the process of computing sufficient
statistics requires expensive database operations. Even if we
restrict the set of candidate structures at each step of the
search, we cannot afford to do all the database operations nec-
essary to evaluate all of them.

We propose a heuristic search algorithm that addresses
both these issues. At a high level, the algorithm proceeds
in phases. At each phase � , we have a set of potential parents
Pot
2 � �Y� � � for each attribute

�Y� � . We then do a standard
structure search restricted to the space of structures in which
the parents of each

�Y� � are in Pot
2 � �Y� � � . The advantage of

this approach is that we can precompute the view correspond-

ing to
�Y� � � Pot

2 � �X� � � ; most of the expensive computations
— the joins and the aggregation required in the definition of
the parents — are precomputed in these views. The suffi-
cient statistics for any subset of potential parents can easily
be derived from this view. The above construction, together
with the decomposability of the score, allows the steps of the
search (say, greedy hill-climbing) to done very efficiently.

The success of this approach depends on the choice of the
potential parents. Clearly, a wrong initial choice can result to
poor structures. Following [Friedman et al., 1999], which ex-
amines a similar approach in the context of learning Bayesian
networks, we propose an iterative approach that starts with
some structure (possibly one where each attribute does not
have any parents), and select the sets Pot

2 � �Y� � � based on
this structure. We then apply the search procedure and get a
new, higher scoring, structure. We choose new potential par-
ents based on this new structure and reiterate, stopping when
no further improvement is made.

It remains only to discuss the choice of Pot
2 � �Y� � � at the

different phases. Perhaps the simplest approach is to begin by
setting Pot

� � �Y� � � to be the set of attributes in
�

. In succes-
sive phases, Pot

2
 � � �Y� � � would consist of all of Pa
2 � �Y� � � ,

as well as all attributes that are related to
�

via slot chains
of length � � . Of course, these new attributes would require
aggregation; we sidestep the issue by predefining possible ag-
gregates for each attribute.

This scheme expands the set of potential parents at each
iteration. However, it usually results in large set of poten-
tial parents. Thus, we actually use a more refined algorithm
that only adds parents to Pot

2
 � � �Y� � � if they seem to “add
value” beyond Pa

2 � �X� � � . There are several reasonable ways
of evaluating the additional value provided by new parents.
Some of these are discussed in [Friedman et al., 1999] in the
context of learning Bayesian networks. Their results suggest
that we should evaluate a new potential parent by measur-
ing the change of score for the family of

�Y� � if we add the� � �Y� R � Z � to its current parents. We then choose the highest
scoring of these, as well as the current parents, to be the new
set of potential parents. This approach allows us to signifi-
cantly reduce the size of the potential parent set, and thereby
of the resulting view, while being unlikely to cause significant
degradation in the quality of the learned model.

5 Implementation and experimental results
We implemented our learning algorithm on top of the Post-
gres object-relational database management system. All re-
quired counts were obtained simply through database selec-
tion queries, and cached to avoid performing the same query
twice. During the search process, we created temporary ma-
terialized views corresponding to joins between different re-
lations, and these views were then used for computing the
counts.

We tested our proposed learning algorithm on two do-
mains, one real and one synthetic. The two domains have
very different characteristics. The first is a movie database

�
that contains three relations: Movie, Actor and Appears,
which relates actors to movies in which they played. The

�
Obtained from http://www-db.stanford.edu/pub/movies/doc.html

database contains about 11000 movies and 7000 actors.
While this database has a simple structure, it presents the
kind of problems one often encounters when dealing with real
data: missing values, large domains for attributes, and incon-
sistent use of values. The fact that our algorithm was able
to deal with this kind of real-world problem is quite promis-
ing. Our algorithm learned the model shown in Figure 2(a).
This model is reasonable, and close to one that we would con-
sider to be “correct”. It learned that the Genre of a movie
depended on its Decade and its film Process (color, black &
white, technicolor etc.) and that the Decade depended on its
film Process. It also learned an interesting dependency com-
bining all three relations: the Role-Type played by an actor in
a movie depends on the Gender of the actor and the Genre of
the movie.

The second database, an artificial genetic database similar
to the example in this paper, presented quite different chal-
lenges. For one thing, the recursive nature of this domain
allows arbitrarily complex joins to be defined. In addition,
the probabilistic model in this domain is fairly subtle. Each
person has three relevant attributes — P-Chromosome, M-
Chromosome, and BloodType — all with the same domain
and all related somehow to the same attributes of the person’s
mother and father. The gold standard is the model used to
generate the data; the structure of that model was shown ear-
lier in Figure 1. We trained our algorithm on datasets of var-
ious sizes ranging up to 800. A data set of size � consisted
of a family tree containing � people, with an average of 0.6
blood tests per person. We evaluated our algorithm on a test
set of size 10,000. Figure 2(b) shows the log-likelihood of the
test set for the learned models. In most cases, our algorithm
learned a model with the correct structure, and scored well.
However, in a small minority of cases, the algorithm got stuck
in local maxima, learning a model with incorrect structure
that scored quite poorly. This can be seen in the scatter plots
of Figure 2(b) which show that the median log-likelihood of
the learned models is quite reasonable, but there are a few
outliers. Standard techniques such as random restarts can be
used to deal with local maxima.

6 Discussion and conclusions
In this paper, we defined a new statistical learning task: learn-
ing probabilistic relational models from data. We have shown
that many of the ideas from Bayesian network learning carry
over to this new task. However, we have also shown that it
also raises many new challenges.

Scaling these ideas to large databases is an important issue.
We believe that this can be achieved by a closer integration
with the technology of database systems, including indices
and query optimization. Furthermore, there has been a lot of
recent work on extracting information from massive data sets,
including work on finding frequently occurring combinations
of values for attributes. We believe that these ideas will help
significantly in the computation of sufficient statistics.

There are also several important possible extensions to this
work. Perhaps the most obvious one is the treatment of miss-
ing data and hidden variables. We can extend standard tech-
niques (such as Expectation Maximization for missing data)

Appears
appears-id

movie
actor

roletype

Actor
actor-id

gender

relationship

probabilistic dependency

Movie
movie-id

process

genre
decade

title

-32000

-30000

-28000

-26000

-24000

-22000

-20000

-18000

200 300 400 500 600 700 800

Sc
or

e

Dataset Size

Median Likelihood
Gold Standard

(a) (b)

Figure 2: (a) The PRM learned for the movie domain, a real-world database containing about 11000 movies and 7000 actors.
(b) Learning curve showing the generalization performance of PRMs learned in the genetic domain. The # -axis shows the
databases size; the H -axis shows log-likelihood of a test set of size 10,000. For each sample size, we show 10 independent
learning experiments. The curve shows median log-likelihood of the models as a function of the sample size.

to this task (see [Koller and Pfeffer, 1997] for some prelim-
inary work on related models.) However, the complexity of
inference on large databases with many missing values make
the cost of a naive application of such algorithms prohibitive.
Clearly, this domain calls both for new inference algorithms
and for new learning algorithms that avoid repeated calls to
inference over these very large problems. Even more interest-
ing is the issue of automated discovery of hidden variables.
There are some preliminary answers to this question in the
context of Bayesian networks [Friedman, 1997], in the con-
text of ILP [Lavrac̆ and Dz̆eroski, 1994], and very recently in
the context of simple binary relations [Hofmann et al., 1998].
Combining these ideas and extending them to this more com-
plex framework is a significant and interesting challenge.

Another direction extends the class of models we consider.
Here, we assumed that the relational structure is specified be-
fore the probabilistic attribute values are determined. A richer
class of PRMs (e.g., that of [Koller and Pfeffer, 1998]) would
allow probabilities over the structure of the model; for ex-
ample: uncertainty over the set of objects in the model, e.g.,
the number of children a couple has, or over the relations be-
tween objects, e.g., whose is the blood that was found on a
crime scene. Ultimately, we would want these techniques to
help us automatically discover interesting entities and rela-
tionships that hold in the world.

Acknowledgments

Nir Friedman was supported by a grant from the Michael
Sacher Trust. Lise Getoor, Daphne Koller, and Avi Pfef-
fer were supported by ONR contract N66001-97-C-8554 un-
der DARPA’s HPKB program, by ONR grant N00014-96-1-
0718, by the ARO under the MURI program “Integrated Ap-
proach to Intelligent Systems,” and by the generosity of the
Sloan Foundation and of the Powell foundation.

References
D. M. Chickering. Learning Bayesian networks is NP-complete.

In D. Fisher and H.-J. Lenz, editors, Learning from Data: Ar-
tificial Intelligence and Statistics V. Springer Verlag, 1996.

M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell,
K. Nigam, and S. Slattery. Learning to extract symbolic
knowledge from the world wide web. In Proc. AAAI, 1998.

M. H. DeGroot. Optimal Statistical Decisions. McGraw-Hill,
New York, 1970.

N. Friedman, I. Nachman, and D. Peér. Learning of Bayesian net-
work structure from massive datasets: The “sparse candidate”
algorithm. Submitted, 1999.

N. Friedman. Learning belief networks in the presence of missing
values and hidden variables. In Proc. ICML, 1997.

D. Heckerman, D. Geiger, and D. M. Chickering. Learning
Bayesian networks: The combination of knowledge and sta-
tistical data. Machine Learning, 20:197–243, 1995.

D. Heckerman. A tutorial on learning with Bayesian networks.
In M. I. Jordan, editor, Learning in Graphical Models. MIT
Press, Cambridge, MA, 1998.

T. Hofmann, J. Puzicha, and M. Jordan. Learning from dyadic
data. In NIPS 12, 1998. To appear.

D. Jensen. Prospective assessment of ai technologies for fraud
detection: A case study. In AAAI Workshop on AI Approaches
to Fraud Detection and Risk Management, 1997.

D. Koller and A. Pfeffer. Learning probabilities for noisy first-
order rules. In Proc. IJCAI, pages 1316–1321, 1997.

D. Koller and A. Pfeffer. Probabilistic frame-based systems. In
Proc. AAAI, 1998.

N. Lavrac̆ and S. Dz̆eroski. Inductive Logic Programming: Tech-
niques and Applications. Ellis Horwood, 1994.

L. Ngo and P. Haddawy. Answering queries from context-
sensitive probabilistic knowledge bases. Theoretical Com-
puter Science, 1996.

D. Poole. Probabilistic Horn abduction and Bayesian networks.
Artificial Intelligence, 64:81–129, 1993.

M.P. Wellman, J.S. Breese, and R.P. Goldman. From knowledge
bases to decision models. The Knowledge Engineering Re-
view, 7(1):35–53, 1992.

